Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3933825.v1

ABSTRACT

Background Lower Respiratory Tract Infections (LRTI) pose a serious threat to older adults but may be underdiagnosed due to atypical presentations. Here we assess LRTI symptom profiles and syndromic (symptom-based) case ascertainment in older (≥65y) as compared to younger adults (<65y). Methods We included adults (≥18y) with confirmed LRTI admitted to two acute care Trusts in Bristol, UK from 1st August 2020- 31st July 2022.  Logistic regression was used to assess whether age ≥65y reduced the probability of meeting syndromic LRTI case definitions, using patients’ symptoms at admission. We also calculated relative symptom frequencies (log-odds ratios) and evaluated how symptoms were clustered across different age groups. Results Of 17,620 clinically confirmed LRTI cases, 8,487 (48.1%) had symptoms meeting the case definition. Compared to those not meeting the definition these cases were younger, had less severe illness and were less likely to have received a SARS-CoV-2 vaccination or to have active SARS-CoV-2 infection. Prevalence of dementia/cognitive impairment and levels of comorbidity were lower in this group. After controlling for sex, dementia and comorbidities, age ≥65y significantly reduced the probability of meeting the case definition (aOR=0.67, 95% CI:0.63-0.71). Cases aged ≥65y were less likely to present with fever and LRTI-specific symptoms (e.g., pleurisy, sputum) than younger cases, and those aged ≥85y were characterised by lack of cough but frequent confusion and falls. Conclusions LRTI symptom profiles changed considerably with age in this hospitalised cohort. Standard screening protocols may fail to detect older and frailer cases of LRTI based on their symptoms.


Subject(s)
Dementia , Pleurisy , Confusion , Fever , Severe Acute Respiratory Syndrome , Respiratory Tract Infections , COVID-19 , Cognition Disorders
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.16.23287360

ABSTRACT

Background Understanding the relative vaccine effectiveness (rVE) of new COVID-19 vaccine formulations against SARS-CoV-2 infection is an urgent public health priority. A precise comparison of the rVE of monovalent and bivalent boosters given during the 2022 Spring-Summer and Autumn-Winter campaigns, respectively, in a defined population has not been reported. We therefore assessed rVE against hospitalisation for the Spring-Summer (fourth vs third monovalent mRNA vaccine doses) and Autumn-Winter (fifth BA.1/ancestral bivalent vs fourth monovalent mRNA vaccine dose) boosters. Methods A prospective single-centre test-negative design case-control study of [≥]75 year-olds hospitalised with COVID-19 or other acute respiratory disease. We conducted regression analyses controlling for age, gender, socioeconomic status, patient comorbidities, community SARS-CoV-2 prevalence, vaccine brand and time between baseline dose and hospitalisation. Results 682 controls and 182 cases were included in the Spring-Summer booster analysis; 572 controls and 152 cases for the Autumn-Winter booster analysis. A monovalent mRNA COVID-19 vaccine as fourth dose showed rVE 46*9% (95% confidence interval [CI] 14*4-67*3) versus those not boosted. A bivalent mRNA COVID-19 vaccine as fifth dose had rVE 46*4% (95%CI 17*5-65), compared to a fourth monovalent mRNA COVID-19 vaccine dose. Interpretation Both fourth monovalent and fifth BA.1/ancestral mRNA bivalent COVID-19 vaccine doses demonstrated benefit as a booster in older adults. Bivalent mRNA boosters offer equivalent protection against hospitalisation with Omicron infection to monovalent mRNA boosters given earlier in the year. These findings support the current UK immunisation programme that advises the use of bivalent booster doses.


Subject(s)
COVID-19 , Respiratory Tract Diseases
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.29.22277044

ABSTRACT

Limited data exist assessing severity of disease in adults hospitalised with Omicron SARS-CoV-2 variant infections, and to what extent patient-factors, including vaccination and pre-existing disease, affect variant-dependent disease severity. This prospective cohort study of all adults ([≥]18 years of age) hospitalised at acute care hospitals in Bristol, UK assessed disease severity using 3 different measures: FiO2 >28%, World Health Organization (WHO) outcome score >5, and hospital length of stay (LOS) >3 days following admission for Omicron or Delta variant infection. Independent of other variables, including vaccination, Omicron variant infection was associated with a statistically lower severity compared to Delta; risk reductions were 58%, 67%, and 16% for FiO2, WHO score, and LOS, respectively. Younger age and vaccination with two or three doses were also independently associated with lower COVID-19 severity. Despite lower severity relative to Delta, Omicron infection still resulted in substantial patient and public health burden following admission.


Subject(s)
COVID-19
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1808133.v1

ABSTRACT

Limited data exist assessing severity of disease in adults hospitalised with Omicron SARS-CoV-2 variant infections, and to what extent patient-factors, including vaccination and pre-existing disease, affect variant-dependent disease severity. This prospective cohort study of all adults (≥18 years of age) hospitalised at acute care hospitals in Bristol, UK assessed disease severity using 3 different measures: FiO2 >28%, World Health Organization (WHO) outcome score >5, and hospital length of stay (LOS) >3 days following admission for Omicron or Delta variant infection. Independent of other variables, including vaccination, Omicron variant infection was associated with a statistically lower severity compared to Delta; risk reductions were 58%, 67%, and 16% for FiO2, WHO score, and LOS, respectively. Younger age and vaccination with two or three doses were also independently associated with lower COVID-19 severity. Despite lower severity relative to Delta, Omicron infection still resulted in substantial patient and public health burden following admission.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.05.21258365

ABSTRACT

The rapid emergence of SARS-CoV-2 mutants with new phenotypic properties is a critical challenge to the control of the ongoing pandemic. B.1.1.7 was monitored in the UK through routine testing and S-gene target failures (SGTF), comprising over 90% of cases by March 2021. Now, the reverse is occurring: SGTF cases are being replaced by an S-gene positive variant, which we associate with B.1.617.2. Evidence from the characteristics of S-gene positive cases demonstrates that, following importation, B.1.617.2 is transmitted locally, growing at a rate higher than B.1.1.7 and a doubling time between 5-14 days. S-gene positive cases should be prioritised for sequencing and aggressive control in any countries in which this variant is newly detected.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.09.21250937

ABSTRACT

ObjectivesTo establish whether there is any change in mortality associated with infection of a new variant of SARS-CoV-2 (VOC-202012/1), first detected in UK in December 2020, compared to that associated with infection with circulating SARS-CoV-2 variants. DesignMatched cohort study. Cases are matched by age, gender, ethnicity, index of multiple deprivation, lower tier local authority region, and sample date of positive specimen, and differing only by detectability of the spike protein gene using the TaqPath assay - a proxy measure of VOC-202012/1 infection. SettingUnited Kingdom, Pillar 2 COVID-19 testing centres using the taqPath assay. Participants54,773 pairs of participants testing positive for SARS-CoV-2 in Pillar 2 between 1st October 2020 and 29th January 2021. Main outcome measures - Death within 28 days of first positive SARS-CoV-2 test. ResultsThere is a high probability that the risk of mortality is increased by infection with VOC-202012/01 (p <0.001). The mortality hazard ratio associated with infection with VOC-202012/1 compared to infection with previously circulating variants is 1.7 (95% CI 1.3 - 2.2) in patients who have tested positive for COVID-19 in the community. In this comparatively low risk group, this represents an increase of deaths from 1.8 in 1000 to 3.1 in 1000 detected cases. ConclusionsIf this finding is generalisable to other populations, VOC-202012/1 infections have the potential to cause substantial additional mortality over and previously circulating variants. Healthcare capacity planning, national and international control policies are all impacted by this finding, with increased mortality lending weight to the argument that further coordinated and stringent measures are justified to reduce deaths from SARS-CoV-2.


Subject(s)
Sleep Deprivation , COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.17.20231548

ABSTRACT

The serial interval of an infectious disease, commonly interpreted as the time between onset of symptoms in sequentially infected individuals within a chain of transmission, is a key epidemiological quantity involved in estimating the reproduction number. The serial interval is closely related to other key quantities, including the incubation period, the generation interval (the time between sequential infections) and time delays between infection and the observations associated with monitoring an outbreak such as confirmed cases, hospital admissions and deaths. Estimates of these quantities are often based on small data sets from early contact tracing and are subject to considerable uncertainty, which is especially true for early COVID-19 data. In this paper we estimate these key quantities in the context of COVID-19 for the UK, including a meta-analysis of early estimates of the serial interval. We estimate distributions for the serial interval with a mean 5.6 (95% CrI 5.1-6.2) and SD 4.2 (95% CrI 3.9-4.6) days (empirical distribution), the generation interval with a mean 4.8 (95% CrI 4.3-5.41) and SD 1.7 (95% CrI 1.0-2.6) days (fitted gamma distribution), and the incubation period with a mean 5.5 (95% CrI 5.1-5.8) and SD 4.9 (95% CrI 4.5-5.3) days (fitted log normal distribution). We quantify the impact of the uncertainty surrounding the serial interval, generation interval, incubation period and time delays, on the subsequent estimation of the reproduction number, when pragmatic and more formal approaches are taken. These estimates place empirical bounds on the estimates of most relevant model parameters and are expected to contribute to modelling COVID-19 transmission.


Subject(s)
COVID-19 , Sialic Acid Storage Disease , Communicable Diseases
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.31.20049239

ABSTRACT

AO_SCPLOWBSTRACTC_SCPLOWAs the number of cases of COVID-19 continues to grow, local health services are at risk of being overwhelmed with patients requiring intensive care. We develop and implement an algorithm to provide optimal re-routing strategies to either transfer patients requiring Intensive Care Units (ICU) or ventilators, constrained by feasibility of transfer. We validate our approach with realistic data from the United Kingdom and Spain. In the UK, we consider the National Health Service at the level of trusts and define a 4-regular geometric graph which indicates the four nearest neighbours of any given trust. In Spain we coarse-grain the healthcare system at the level of autonomous communities, and extract similar contact networks. Through random search optimisation we identify the best load sharing strategy, where the cost function to minimise is based on the total number of ICU units above capacity. Our framework is general and flexible allowing for additional criteria, alternative cost functions, and can be extended to other resources beyond ICU units or ventilators. Assuming a uniform ICU demand, we show that it is possible to enable access to ICU for up to 1000 additional cases in the UK in a single step of the algorithm. Under a more realistic and heterogeneous demand, our method is able to balance about 600 beds per step in the Spanish system only using local sharing, and over 1300 using countrywide sharing, potentially saving a large percentage of these lives that would otherwise not have access to ICU.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL